Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work or answer, you will receive little or no credit!

1. Determine if the following set of vectors are linear independent or not:

$$
\left\{\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right),\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)\right\}
$$

2. Determine if the following set of vectors are linear independent or not:

$$
\left\{\left(\begin{array}{l}
5 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
7 \\
2 \\
-6
\end{array}\right),\left(\begin{array}{c}
9 \\
4 \\
-8
\end{array}\right)\right\}
$$

3. Let $T: C^{4}(\mathbb{R}) \rightarrow C(\mathbb{R})$ with

$$
T(f)=\frac{d^{4} f}{d x^{4}}
$$

Show that T is a linear transformation.
4. Let $T: C(\mathbb{R}) \rightarrow \mathbb{R}$ with

$$
T(f)=\sum_{j=1}^{n} f\left(x_{j}\right)
$$

where x_{1}, \ldots, x_{n} are a set of random real numbers. Show that T is a linear transformation.
5. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be a linear transformation defined by:

$$
T\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
2 x_{1}-x_{2} \\
10 x_{2}+2 x_{3} \\
4 x_{2}+5 x_{4} \\
11 x_{2}-8 x_{4}
\end{array}\right)
$$

Find the matrix that represents T.
6. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by:

$$
T\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\binom{x_{1}+4 x_{2}+5 x_{3}}{3 x_{2}-2 x_{3}}
$$

Find the matrix that represents T.
7. Let

$$
A=\left(\begin{array}{ccc}
0 & 1 & 2 \\
1 & 0 & 3 \\
4 & -3 & 8
\end{array}\right)
$$

It is known that A is invertible. Compute A^{-1} using row reduction.
8. Let

$$
A=\left(\begin{array}{ccc}
1 & 0 & -2 \\
-3 & 1 & 4 \\
2 & -3 & 4
\end{array}\right)
$$

It is known that A is invertible. Compute A^{-1} using row reduction.
9. Let v_{1}, \ldots, v_{k} be a set of linear independent vectors in \mathbb{R}^{n}. Suppose A is an $n \times n$ matrix. Show that $A v_{1}, \ldots, A v_{k}$ are linear independent.

